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Evaluation of the enhancement of convective heat
transfer by turbulent flows through profile, roughened, and
corrugated (finned) channels. The evaluation is based on
an analysis of the structure of a twoélayer turbulent flow.
An equation containing three empirical constants is derived to
characterize the limiting turbulence of a flow composed of
a layer with a constant coefficient of turbulent heat
exchange and a viscous sublayer in which the molecular
viscosity is greater than its turbulent viscosity. Artifi-
cial roughness is found to increase heat removal in
channels by a factor of 1.5. The reduction of heat ex-
changer dimensions by diminishing the exchanger diameter,
by increasing heat carrier velocity, or through a wider use

of finned surface is suggested.

Two-layer model of the structure of turbulent flow, characterizing

its limiting turbulence is discussed.

* Note:

On the basis of the model analysis,

/123%
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conclusions are reached concerning the perspectives of the enhancement
of heat transfer.

The problem of the enhancement of convective heat transfer, which
is related to the reduction in metal enclosures and in the over-all size
of numerous heat exchangers used in power engineering, chemistry, and
other segments of the national economy, is of great interest. One of
the methods of such enhancement is the production of flow turbulence.
For this purpose, devices are used which provide periodic expansions
and disruption of the flow, and as a result periodic restoration of the
boundary layer (profile channels, artificial roughness, various coverings,
etc.). These devices also produce intense oscillations and pulsations
in the flow with a varying frequency spectrum (Ref. 1).

The thermal resistance as a function of the Prandtl numter is very
nonuniformly distributed along the normal to the flow. If one uses the
usual three-layer model of the turbulent flow structure in a channel,
as has been done for instance in (Ref. 2) (a viscous sublayer, inter-
mediate region, turbulence nucleus), then the calculations done for
Re = 10% show that at Pr = 0.72 the thermal resistance of the viscous
sublayer constitutes 32.3% of the total thermal resistance, that of the
intermediate region - 527%, and that of the turbulence nucleus - 15.7%.

Here the thermal resistance is given by the formula

. R=r +1;+71 = 1/Nu

where Nu is the Nusselt number, r r, denote, respectively, the thermal

-} ) ri:

resistance of the sublayer, of the intermediate region, and of the nucleus




of the flow. It is very interesting to note that the main part of the air
thermal resistance is concentrated, not in the viscous sublayer, but in

the intermediate region, a notable fraction of the total thermal resistance
being concentrated also in the nucleus of the turbulent flow. For Pr = 10
one obtains, respectively, rg = 74.5%Z, ry = 22%, ry = 3.3%. For Pr = 200
we have rg = 99%.

Therefore, in order to achieve enhancement of convective heat trans-
fer, having in mind complete turbulent motion, for gas flow it is, strictly
speaking, necessary to render the entire region of the boundary layer tur-
bulent, whereas for the flow of viscous liquids it is enough to set in
turbulent motion only the viscous sublayer. It must be assumed that it
is practically impossible to render a flow without any limit turbulent,
and that its limiting turbulent state exists.

Recent measurements in boundary layers have shown (Ref. 3) that the /124
turbulent flow near the walls can, even for the pre-disruption state, be
divided into the viscous sublayer (0.001 - 0.01 8), the region of the
logarithmic velocity profile (0.1 - 0.2 §), and a region with a constant
coefficient of turbulent exchange (0.9 - 0.8 8), where § is the thickness
of the boundary layer.

According to the experiments with strongly roughened tubes (Ref. 4),
the turbulent viscosity changes only slightly along the normal to the
surface.

The analysis of the experimental data shows that the turbulence of
the flow leads to an expansion of the region with a constant coefficient

of turbulent exchange.




The limiting turbulent state can be represented as the region with
a constant coefficient of turbulent heat exchange expanded up to the
viscous sublayer (the region of the logarithmic profile is "washed out").
Starting with the above preliminaries, we shall analyze a two-layer model
of flow in a channel involving a region with a constant coefficient of
turbulent viscosity and a region of a viscous sublayer. The viscous
sublayer (the region in which the molecular viscosity is greater than
its turbulent viscosity) will exist at any practical turbulence in the
nucleus of the flow; however, the thickness and the level of turbulence
in it will vary. According to (Ref. 2), the turbulent viscosity in the

sublayer is given by the formula

I ¥
By = ﬂ”-lpl';;' 1

where up is the coefficient of turbulent viscosity; B = 0.032 is an experi-
mentally determined coefficient; Vy denotes dynamical velocity; p is the
density; y denotes the distance from the wall; y; is the thickness of
the viscous sublayer.

Defining, as is customary, the thickness of the sublayer by the ex-
pression vy = av/vi, we shall obtain the following for the velocity at

the boundary of the sublayer

] 4]
= _de - tW — av,
= i ST Y = T @)

where o is a proportionality coefficient; T denotes the tangential stress;
T denotes the tangential stress at the wall; u is the coefficient of the

dynamical viscosity.




Dimensional analysis considerations, on which the derivation of
the structure formulas for the viscous sublayer is based, are also valid
for a turbulent flow. An increased turbulence is taken into account by
the magnitude of the dynamical velocity vix = /4;7;.

Let us assume that the numerical values of the constants o and B8
are not changed. We shall consider stabilized flow in a straight, smooth,
circular tube of radius Ry. The tangential stress over the cross section
of the tube is, as we know, expressed by the formula 1 = 7, (R/Rg), where

Y

Ty, is the friction stress at the wall, R- is the radius (at which the
stress is being calculated) of the tube. We shall assume that the coeffi-
cent of turbulent viscosity up is constant over the cross section of the

tube (except for the region of the sublayer) and along its length. Then

the equation for determining the velocity assumes the form

u R
bran Y B
ToT R2
or u=C_C - "R 3 We determine the constant C from the condition
TH0

that the velocities be equal at the sublayer boundary. According to

equation (2) we have
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We consider that the magnitude of ug is determined, just as for free 125

stream jets,by the formula (Ref. 5):

pr = o Vplo =°—72”—‘- Re, (5)



where o is an empirical constant which can be determined by experiments

with stream jets, Jp is the intensity of the stream jet.

v -
Using the relations :f==§§;; ~— where A is the resistance coeffi-

2
cient, and u denotes the mean velocity -- and (Ref. 5), we rewrite equa-

tion (4) in the form

f_ Ve . A (. 4V2a\_ A (RY
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Three empirical constants are included in the above expression for
the limiting turbulent velocity profile; one of them, o, is determined
from experiments with free stream jets, and the constants o and f -- from
experiments with smooth tubes under the usual conditions of turbulent
flow. The quantity o characterizes the initial turbulence to a certain
extent. The value ¢ = 0.21 was used for further calculations (Ref. 5).
The constant o characterizes the dimensionless thickness of the viscous
sublayer a = yjvy/v. As follows from an examination of the experimental
data, in boundary layers of various kinds (Ref. 3), including diffusive
boundary layers, and also in sections, in pre-disruption states, the
value a = 6 can be considered as very close to its minimal value.

The velocity profile determined by expression (6) can be represented

by the power law

=) @

The Re number is included in the expression for the velocity (6). How-
ever, calculations show that its influence on the velocity profile is

negligible. Thus, when Re is changed from 10% to infinity, q/; changes by

6



less than 0.1%.

Therefore, the value of Re is barely apparent in the exponent n in
formula (7). The value n X 50 obtained for the case under consideration
is valid for all Re numbers.

The turbulent velocity profile, analyied above, fills to a greater
extent than usual velocity profiles for turbulent flow in a tube. Thus,
according to the data in (Ref. 6) for Re = 3'106, n = 10. The increase
in the value of n is explained by a greater flow turbulence.

Let us determine the mean velocity

1 Re

%
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After simple transformations, using equation v./u = /X/ZJE, we obtain
from equation (8) the equation which allows us to determine the coefficient

of hydraulic resistance for turbulent flow through a tube

La? = A aky2\:
T ————— 2 2 _——ee— i - _——
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Taking 0 = 0.21, o = 6, we obtain A = 0.3. Similarly to u/d, A barely
depends on the Reynolds number. The conclusion stated above is very re-
markable, since it is usually believed that the self-similarity of the
stream flowing close to a wall is determined by the presence of pressure
resistance — as is the case, for instance, with a flow in greatly 1126
roughened tubes. However, the result obtained above -- namely, that in
the absence of pressure resistance (with only friction resistance being
present) the resistance is independent of the Reynolds number -- has also

been confirmed by recent experiments with tubes whose interior was roughened



by a series of rings placed along these tubes (Ref. 7). The pressure dis-
tribution was measured on ring-like transverse partitions placed in the
tubes by means of a drain-pipe arrangement. The pressure on the front
surface of a partition was, naturally, greater than that on its reverse
side. However, a value for the pitch of the ring-like partitions was
found in the experiments at which the swelling created by the suhsequent
partition neutralized the decrease in pressure, and the form resistance
was found to be zero. The resistance coefficient is also in this case
independent of the Reynolds number. Thus, in the presence of high tur-
bulence self-similar, undisrupted flows may exist in the vicinity of the
walls. We may determine the heat transfer in a tube for stabilized condi-
tions using our two-layer model of turbulent flow, with the heat load
being constant over the length of the tube. For this purpose we use the

Lyon integral (Ref. 2).
¢ ]
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where {=—, m=—.f, g-a-l".—,}., is the coefficient of turbulent heat
R, u repe

conduction, ¢ is the heat capacity.

According to the adopted two-layer model, we have the following two
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where

L
W=l

The turbulent viscosity in the sublayer is taken into account by
equation (1). Determining w from equation (6), we obtain the following

after integrating to within an accuracy of 0.1% (for Re > 10%)
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Figure 1 shows the dependence Nu = f(Re) for Pr

0.72; this was cal- /127

culated from formula (12), where we took A = 0.30; a = 6, B = 0.032; 0 =
= 0.21; ¢ = 1. The results of the calculation based on formula (12) for
the case € = 2 in the nucleus of the flow, as is usually assumed in a
theory of stream jets, are represented by a dotted line.

As we see from the graphs, the effect of the change in ¢ within the
indicated limits on the heat transfer is negligible, this being related to
the small thermal resistance of the flow nucleus in the case under con-
sideration. The limiting value of the heat transfer obtained for Re = 10*

is 13.0 times greater, and for Re = 5-10% is 15.5 greater than that ob-

tained for the usual turbulent flow through a smooth tube.
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Figure 1

Heat Transfer in Turbulent Flows: 1- Nu = 0.02 Re?"8;
2- dense layer (Ref. 11), Pr = 0.72 (recalculated for

u (narrow cross section); 3- from formula (14), Pr = 20;
4- from formula (14), Pr = 100; 5- from formula (12),

€ = 2; 6- from formula (12), € = 1; 7- from formula (14),
Pr = 0.72; 8- roughened tube (Ref. 9), k/Rp = 0.4;

L/K = 9.8; 9- heat transfer at the critical point

(Ref. 12).

The heat transfer, determined by formula (12), is obviously difficult

to achieve in practice. For this purpose, it is necessary to render the

flow turbulent continuously along the entire length of a channel, without
at the same time decreasing the friction stress in the vicinity of the

wall. The turbulent flows encountered in practice are different, mainly
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in the fact that the flow is made turbulent due to periodical

expansions and disruptions of the flow, which diminishes the friction

stress near the wall. The flow in dense granular layers; in greatly roughened
tubes, in various coverings, etc., may serve as examples of such flows.

In the periodically disrupted flows under consideration, the friction
stress near the wall in diffusive sections is diminished, and at the points
of disruption it strives to zero. The energy dissipation in this case takes
place mainly at a certain distance from the wall. In this connection, we
shall examine the results of experiments carried out by Fedge and Faulkner
(Ref. 8), who have measured the distribution of the friction stress around
the entire perimeter of the cylinder. The mean friction stress calculated

from fromula
8

o=(§ s (o)

[

for Re = und/v = 5.2°10°, where S -- the perimeter line, d -- the diameter
of the cylinder, was found to be ¢y = 0.00318. For a smooth plate and

the same Re number, we have for a turbulent boundary layer c = 0.005, and
for a laminar boundary layer ¢ = 0.002. Thus, in spite of an intense
disruption process, T, proves to be similar to the case of a flow with
vanishing gradient past a smooth surface. A direct determination of T,
with a sufficient accuracy, for the case of a demse layer, greatly
roughened tube, etc., is at present impossible, whatever the theoretical
methods used, and its experimental determination is extremely difficult.

By analogy with the examined case of interrupted flow through a cylinder,

we can assume in the first approximation that in a demnse layer and in

11



greatly roughened tubes the friction stress in the vicinity of a wall is

the same as that for a smooth surface.

In the examples under consideration, for instance, in a dense layer, /128

new boundary layers start forming behind the points of flow separation
from the surface; movement in the boundary layers in the rear regions is
directed towards the main flow and is regulated by the return flow. Thus,
in contrast to a developed movement through a tube, in our case the move-
ment will be periodically unstable.

Similar phenomena take place also in greatly roughened channels.
Instead of such periodically unstable motion, one can, to a certain
approximation, examine movement which is stable on-the-average in a tube.

Based on the above statements, we assume that the average friction stresses

s ;
at the wall - 18 ng where S is the line of the channel perimeter
Tw=§- tW N
[
—-- with periodical disruptions being present -- will differ negligibly

from the stresses encountered in flow through a smooth channel.

Therefore, in order to give an estimate for limiting, turbulent heat
transfer with periodic disruptions of the flow, we assume in formula (12)
that for a viscous sublayer 1 is the same as that for the case of a smooth
tube, that at the boundary of the sublayer 1t undergoes a jump, and that
in the nucleus of the flow A = 0.30 is the value corresponding to 7. In
spite of the fact that the thickness of the viscous sublayer is assumed
to be the same as that for a smooth channel, we assume that the turbulence
in the sublayer is increased, and that, consequently, the vertical com-

ponent of the pulsating velocity at the boundary of the sublayer is

12




vy ~ v, = gﬁ, where A = 0,30, Then, at the sublayer boundary the

turbulent viscosity is given by the formula
Br V’I
—=fay—. 13
" Bay - (13)

The subscript 0 corresponds to ordinary turbulent flow.
Taking into account the stated premises, on the basis of formula (12),

we obtain the expression

248
1 _0’0634(1—“1'13‘)_'_
2Nu 14 PrRe-0,186
2, 24 a? 14
. 23 . 1n36+8,5a+a+2amtg 8,5a ' (14)
—_— 2 —
Re'ﬁofy’PrV;—-' 36 —8,5a - a? a? — 36
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aq = — Y
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Figure 1 presents the dependence Nu = f(Re), calculated from formula
(14) for Pr = 0.72; 20; 100. We shall compare the obtained results with
the available experimental data on turbulent flows (dense layer, greatly
roughened tubes). At large values of both the relative roughness k/Rg
and the distances between the elements of ring-like roughness, flow
through such a tube can be schematically represented as an expansion of a
stream jet in a limited space. For this kind of arrangement, at Pr = 0.72
the maximal heat transfer was observed at k/Ry = 0.4; L/k = 9.8 (Ref. 9),

where k is the height of protuberances, L is the distance between them.

13




These data are represented in Figure 1.

Now we shall examine the experimental data on a dense layer. The /129

boundary layer which is turbulent to a maximal extent at separate cross
sections of the layer, due to the action of vortex tracks, and the
phenomena in a demse layer or in the roughened tube discussed above, are
very similar to each other. In both cases, the nucleus of the flow
(external streamline flow) is saturated with vortices. As we know, the
data on heat transfer in a dense layer, due to the uncertain determination
of particle location, usually pertain to the so-called diffusion velocity
-~ namely, to the velocity which would exist if no particles were present.
In order to determine the real velocity in demse layer chanmels, it is
necessary to find the real distribution of particles in the layer. Sleduya
(Ref. 10) assumes that, from the statistical point of view, a dense layer
composed of mixed identical spheres may be regarded as a certain combina-
tion of separate groups of densely-packed, simple cubical distributions
correlated in the ratio resulting in the observed *.

For a simple cubical packing, the porosity P = 0.476. Correspondingly,
for densely-packed distributions (pyramidal and tetrahedral) P = 0.26. On
the basis of experimental data, the mean porosity of the layer can be
assumed to be P = 0.4,

In accordance with the adopted assumptions, we have an equation
determining the ratio of the corresponding packings 0.4 = 0.476x + 0.26(1-x).

Hence, x = 0.648. Tor a simple cubical packing, the ratio of the narrow

* Translator's note: Word illegible in foreign text, but probably porosity.
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transitional cross section to the total cross section is Fnr/F = 0,212,
whereas for densely-packed coverings Fnr/F = 0.0885. The mean value

for the narrow cross-section of the layer, in accordance with the packing
fractions, is F/Fnr = 5.93. The obtained ratio F/Fnr allows us to de-
termine the velocity in the narrow cross section of the layer from the
diffusion velocity; by the tube bundle analogy, the former is the con-
trolling velocity. We may also recalculate the data on the heat transfer.
Figure 1 in the above-mentioned paper presents the data obtained by W. H.
Denton (Ref. 11).

The comparison between the computational results based on formula
(14) and the experimental data on a dense layer and greatly roughened
tubes, shown in Figure 1, makes it clear that these data are very similar
to each other. Such a coincidence allows us to assume that both the
theoretical dependence and the experiment characterize a state which is
very close to the limiting state, from the point of view of turbulence
in the presence of periodic expansions and disruptions of the flow in the
vicinity of the wall.

The intensity of heat transfer at Re = 10"* is in the case under con-
sideration 4.5 times greater than that for ordinary turbulent flow through
a tube. Generally speaking, the maximal heat transfer in a flow will take
place in the case of the minimal thickness and maximal turbulence of the
boundary layer. Obviously, flow at the critical point of, for example,

a cylinder under the condition of maximal turbulence of the advancing
flow corresponds to the stated conditions.

Figure 1 shows the data for the examined case, obtained in (Ref. 12)

15




for initial turbulence which was the greatest achieved in the experiments
(the distance between the cylinder and the grating which produces turbu-
lence is L/d = 6, where d is the diameter of the cylinder). As can be
seen from the graph, these data for the explored range of Re numbers are
very close to the data on the dense layer in a greatly roughened tube,

although the structure of the boundary layer is different in this case

|
|
(laminar boundary layer), and the friction stress at the wall is not
diminished. 1
The case of a turbulent boundary layer at the front critical point ‘
|
does not occur in practice. The agreement with the calculations according !
to formula (14) is in this case accidental; it shows, however, that the ‘
computation based on formula (12) is close to the maximal heat transfer }
|
observed in practice. J
A comparison of the computational results based on formulas (12) and
(14), and also a comparison with the data for ordinary turbulent flow through
a tube, indicates that periodic expansions and disruptions, and, conse-
quently, restorations of the boundary layer, substantially intensify heat
transfer. However, the enhancement of heat transfer would have been even /130
greater [formula (12)] if these phenomena had not been followed by a de- {
crease in the friction stress at the wall, as compared with T in the ‘
stream. Nevertheless, this phenomenon is an essential property of dis-
ruptive flows. Creation of equivalent turbulence in a flow not due to *
expansions and local disruptions at the wall, but due to some other

mechanism -- without simultaneously decreasing the friction stress at the

16 i
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wall, will lead to a further enhancement of heat transfer. Up to the
present, this problem has not been solved in practice. The hydraulic
resistance, determined by equation (9), does mot contain a fraction
corresponding to pressure resistance, as is the case for a demnse layer
and for roughened tubes, and, consequently, it is minimal for a flow
with the heat transfer close to its limiting value.

In this conmnection, it is of interest to compare the obtained data
[heat transfer from equation (14), resistance from equation (9)] with
the available experimental results for various devices producing turbu-
lence, and also with ordinary turbulent motion through a tube, the com-
parison being made with regard to energy. In Figure 2, such a comparison
is shown in the coordinates a, N, where N is the power needed to overcome
the resistance, taken with respect to the unit area. The figure also
shows the results of experiments with optimal spiral turbulence-producing
devices (Ref. 13), and with roughened profile channels (Ref. 14). It
follows from the graphs that the limiting turbulence due to restoration of
the boundary layer and local disruptions ensures the 2.3 increase in heat
removal over the value found for ordinary turbulent flow through a smooth
tube, with resistance losses being equal.

The data on artificial roughness shown here provide for the 1.5
increases in heat removal, as compared with the value for a smooth tube.
Thus the "reserve" increase in heat removal, taking into account the
practical unattainability of the limiting state (from the point of view
of the relation between the resistance losses and the heat removal), is
found to be quite small.

17
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Comparison Between Turbulent Flows Taking into Account the
Energy Relations: 1- from formulas (9) and (14); 2- spiral
turbulence-producing devices (Ref. 13); 3- Erofile channel
(Ref. 14); 4- Nu = 0.02 Re 9-8, Ay = 0.316/% Re.

(a) - w/l%degree; (b) - 100 w/m2.

Considerable effort has recently been directed toward creating turbu-
lent surfaces of heat transfer due to the optimal form of the channel
walls.

The above analysis shows that the possibilities in this direction
are very unpromising from the point of view of heat removal with equal

resistance losses.

Considerable reserves for enhancement of heat transfer in forced /131

turbulent motion, in addition to those mentioned earlier, can be found,
apparently, in the application of dispersive materials existing in forced
states (pseudo-liquified layer, etc.).

The increase in compactness of heat exchangers should also be achieved

by a wider use of finned surfaces, by diminishing the channel diameters,

18



and by increasing heat carrier velocity.

Received June 7, 1965.
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